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Unstable higher modes of a three-dimensional nonlinear Schobinger equation
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Characterized by a central core surrounded by a number of concentric shells, the stability of the higher-
bound solitary wave solutions to a three-dimensional nonlinear 8itger equation with saturating nonlin-
earity is investigated. A linear stability analysis of spherical harmonic modes reveals these solutions to be
transversely unstable. Further, the complicated intermediate patterns observed in numerical simulations are
shown to result from a degeneracy in the number of maximally unstable modes, the mode mixture depending
on the realization of the destabilizing perturbatip81063-651X97)00106-2

PACS numbd(s): 42.65.Tg, 42.65.5f

[. INTRODUCTION cently, Soto-Crespet al. [11] studied the stability of these
higher-bound states in a 2D NLS equation with saturating
The generalized nonlinear Scklinger (NLS) equation nonlinearity. In this case, the fundamental mode is a single
Gaussian-like peak while the higher modes are comprised of
JE 1, ) a central spot surrounded by a number of concentric rings.
'E + EV E+f([E[)E=0 @) Numerical propagation of these solitary waves revealed them

to be transversely unstable, the rings decomposing into a
is a d-dimensional amplitude equation that describes thehumber of stable filaments that subsequently underwent
modulations of a slowly varying complex envelogen the  complicated dynamical interactions. The number of filaments
presence of weak nonlinearity governed by the functiorformed by a given ring was found to agree with the predic-
f(|E|?). It arises quite naturally in several physical contextstions of both a linear stability analysis and an approximate
[1], for example, the evolution of the plane-polarized enve-analytical treatment.
lope of a quasimonochromatic electromagnetic pulse propa- The aim of this paper is to investigate the analogous case
gating through a dielectric having an intensity-dependent diin three spatial dimensions. Using the terminology of nonlin-
electric constanf2]. In one dimension withf (|[E|?)=|E|?,  ear optics, here the fundamental mode is a stable spherically
Eq. (1)'s most well-known attribute is its integrability and symmetric “light bullet” while the higher-bound states con-
the analytical existence of soliton solutiof®. For the same ~sist of an inner core surrounded by a number of concentric
nonlinearity in d>1 dimensions, while localized solitary shells. Not surprisingly, these higher modes are also found to
wave solutions exist, they are found to be unstable to smalpe unstable to propagation, the shells eventually decaying
perturbations, the pulses either delocalizing or undergoindto a number of fundamental light bullets. However, due to
collapse depending on the initial condition. As noted by Wil-both the increased dimensionality and a degeneracy in the
cox and Wilcox[4], this is a relatively common occurrence, humber of unstable modes possessing the maximal growth
“except for the case of one dimension, wave functions obfate, the nature of this decay is markedly different from the
tained from equations containing low-order nonlinearities2D case.
generally suffer from the disease of being unstable ... .” The remainder of the paper is organized as follows. In
However, in numerous cases it has been found that saturatiéeec. I, the model equation is introduced from a nonlinear
of the nonlinearity suppresses the instability resulting in theoptics perspective and the solitary wave solutions are de-
existence of stabléat least to small perturbationkcalized scribed. In Sec. lll, the linear stability analysis formalism is
solutions. presented and predictions are made about the expected dy-

As illustrative examples, the stabilizing effect of nonlin- namical behavior of shell-state propagation under the gov-
ear saturation was invoked by Marburger and Daj#sn erning wave equation. In Sec. IV, simulations are shown for
the early days of nonlinear optics to explain the formation ofthe one- and two-shell cases and the results examined in
small-scale filaments in the cross section of a self-focusingiew of the linear stability analysis predictions. Finally, Sec.
laser beam, by Wilcox and Wilcopd] and Kawet al. [6], V contains a summary and brief discussion.
who considered a saturating exponential nonlinearity in a
class of two- and _three—dimensior@D) wave equations, IIl. MODEL EQUATION AND STATIONARY STATES
and more recently in the study of “light bullets”—stable 3D
nondispersing nondiffracting optical envelope solitons The physical situation we consider is the propagation of a
[7-10]. 3D plane-polarized quasimonochromatic electromagnetic

In addition to the fundamental Gaussianlike stationarypulse traveling through a bulk nonlinear glass under the
states that only asymptotically approach zeroginl there combined effects of dispersion and diffraction. With the
exist higher-bound solitary waves that are characterized bgssumption that the pulse envelapés slowly varying com-
progressively less localization and, more importantly, an inpared to the carrier frequency and that the intensity-
creasing number of field nodézero intercepts ofE|). Re- dependent refractive index has the saturable famm
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No+ Nyl |2/ (1+a’| ¢|?), wherea’ is an inverse measure of 24
the saturation intensity, the complex envelope evolves ac- n=2
cording to[7]

J J P P P ¢ n=1 |

2ik| = +— — | p+—=+—>+kD—
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2k?n 2 U
ng (1+a’[¢]%)
Here, z' is the pulse propagation directior, andy’ the 0
transverse spatial dimensiorn$,the time,k the wave vector
of the underlying carrier wavey4 the group velocity, and
D (assumed positiyethe group velocity dispersion. Making
use of the scalingst=(t'—z'/vg)(k/D)*% (x,y,2) 0 ' ) 5_8
=k(x",y’,z"), E=(n,/ng)¥2¢, anda=(n,/ny)a’, we ob- r
tain the following(3+1)-dimensional nonlinear Schdinger
equation: FIG. 1. The lowest three modes from tjfe=3 family of soli-
E o1 | |2 tary wave solutions. Inset: modulus of the, solution reveals a
0 central core surrounded by a single shell.
L V24— __E=
152tV E 1+a|E|2E 0. @

U,(r;B), the integrated intensitgpowep of the nth mode as
where V2= 9%/ gt2+ 9% 9x%+ (92/(9y2. Note the existence of a function of the(shape-changingoarameters is given by
only one free parameter implying that, even restricting our-
selves to the current physical context, the results that follow N 22
are applicable to a wide range of material and pulse param- Pa(B)= fo Un(r;8)redr. ®)
eters.
Spherically symmetric solitary wave solutiofpheroidal  rigure 2 shows the power curves for the lowest three modes
in laboratory units are found by inserting the assumed form \ynere the filled circles indicate the powers of the three so-
. lutions depicted in Fig. 1. The genertl shape of these
E(r=\t"+x*+y*2)=exp(i 2)U(r) @ curves is characteristic dof(|E|?) models displaying satu-
rable behavior. Further, the minima of tRg curve(denoted
Pmin) is found to delimit two regions of differing stability.
Solitary waves on the negative slope branch are numerically
u? } found to be unstablgl0]. Conversely, positive slope solitary
0

into Eq. (3) yielding an ordinary nonlinear differential equa-
tion for the radial profile, viz.,

du 2du
+2U 1+au? —B|= (5  waves are theoretically predicted to be stglil2] and this is

_2 + —_—

dr rdr borne out by numerical simulatiorjd0,13. In addition to
Assuming thal has its maximal value at=0, and impos- their intrinsic stability, the;e_r _solutions hav_e be_en shown to
ing the boundary conditiongU/dr, d2U/dr2—0 asr—c, act as attractor states to initial profiles quite different from
Eq. (5) constitutes a two-point boundary value problem for
the real profiledJ. Lacking an analytical solution, these radial
profiles must be obtained numerically, one empirically find-
ing a single monotonically decreasing Gaussian-like profile
and a number of higher modes characterized by an increasing
number ofU=0 crossings of the field. The members of a
given B family are enumeratedl, where the subscriph
denotes the number of zero crossings.

As an example, setting the saturation paramate.05
(which it will remain for the remainder of this papeFig. 1
shows the lowest three modes from te-3 family of so-
lutions. Profiles at otheB values are qualitatively similar,
this parameter’s effect being to gradually modify both the
field's peak height and the locations and depths of the ex-
trema. As the simulation results presented later depict the
evolution of the modulus of the complex fiell the figure
inset similarly shows$E,|=|U,| revealing a central core sur-
rounded by a single shell.

As intimated in the Introduction, the Simple existence of FIG. 2. |ntegrated intensitypowe[j Vs the shape_changing pa-
solitary wave solutions does not imply their stability when rameterg for the lowest three bound modes. Circles correspond to
evolved under the governing wave equation. Some insighthe profiles shown in the preceding figure. Solitary waves to the
into stability can be obtained as follows. For a given profileright of P,,,,, are known to be stable.
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the true solitary wave profile, e.g., Akhmediev and Soto-
Crespo have demonstrated the decay of a cylindrical beam
subject to a temporal modulation into a train of fundamental
stateq 8].

One might initially suspect that the higher modes also
obey the above stability criterion and that stable shell states ‘g\
are viable for a range of positive-slogevalues. However,
this test does not preclude the existence of a transverse in-
stability, a situation which was observed in Rgfl] in a 2D
version of Eq.(3) and which we similarly investigate for
d=3. 24

Ill. LINEAR STABILITY ANALYSIS |E1l

In this section a linear stability analysis is performed for
the 3D shell states. Section Ill A discusses the method used
to determine the growth rates and functional forms of the
unstable perturbation eigenmodes. The subsequent sections
present linear stability analysis results for the one- and two- FIG. 3. Top: dominant unstable=3 radial perturbation eigen-
shell cases, respectively. mode emerging from a small random initial condition. Bottom:

modulus of theB=3 one-shell solitary wave.

A. Formalism . . . .
tial profile evolved numerically according to E¢8) should

To analyze the stability of the shell states, we follow eventually be dominated by the mode with the largest growth

Soto-Crespoet al. [11] and, considering the Laplacian of rate. Once this mode emerges, the growth constant can be
Eq. (3) in spherical polar coordinates, choose an appropriat@xtracted via the prescription

separable perturbation to theh mode stationary solution
E,, namely,

1

5.=E[In|g(r,z+Az)|—Inlg(r,z)l] (10

E(r,0,¢,2)=Eq(r,2)+ ug(r,2)Y"(0,6). (7)

) ) ) and the calculation terminated whéh converges both iz
Here, u is a small expansion parameter and, noting that theynq as calculated at several locations across the pulse. This
angular perturbation function must be real to obtain the linqg4ter stopping criterion ensures thafr) is growing in a
earized equation thn?t foIIows,mthe spherical harm%mc funcypatially invariant way and is an accurate representation of
tion is defined asy|’(6,¢)=P/(#)cosfng), with P" the  tne true radial perturbation eigenfunction.
associated Legendre function.

To first order inu, substitution of Eq.(7) into Eq. (3)

. . ? . . . X B. One-shell case
yields the following(linear partial differential equation for

the radial evolution of a given perturbation As a concrete example, consider the stability of the
B=3 one-shell state depicted in Fig. 1 to a spherical har-
dg 1 a9 ,d9| I(1+1) monic perturbation with index=3. Starting with a small
15z +§z Al a_r) "oz Y random initial condition foig(r,0), Eq. (8) was evolved us-
ing a (unconditionally stable Crank-Nicholson algorithm
2|E,|?g+a|Eq|*g+E2g* [15]. As shown in the inset of Fig. 3, an exponentially grow-
(1+a|E, %2 =Y 8 ing radial profile for|g| emerges. The vertical scale is omit-

ted as the absolute height of the pulse is not important.
While the 6 dependence is implicit via the spherical har- Rather, the salient feature is that by 3 all points across the
monic mode index, due to rotational invariance of the La- Pulse are found to be growing at the same exponential rate
placian no reference to the azimuthal indexoccurs in  93=3.75. At this point the calculation was terminated yield-
Eq. (8). The ramifications of this point will become clear in INg the (normalized |g(r)| profile shown to the left of the

Sec. Il B. inset figure. For comparison, below we plot tBe=3 one-
Exponentially growing solutions of the form shell radial profile revealing thdg| is peaked about the
mean radius of the shell and acts negligibly in the vicinity of
g(r,z)=g(r)exp 6z) (99  the origin. Such localization implies that this perturbation

will affect only the shell leaving the central core relatively
are sought with substitution of Eq9) into Eq. (8) consti-  untouched.
tuting an eigenvalue problem for the growth constargnd In order to discover the maximally unstable mode, the
radial perturbation eigenfunctiay(r). Rather than solve this above analysis was repeated for otheralues, one finding
problem directly, the following technique due to Akhmediev that aside from the unstable mode discussed above, only for
et al. [14] was used to extract both the perturbation eigend=1, 2, and 4 do exponentially growing profiles emerge.
functions and their respective growth rates. If the systenThese unstable modes possess growth rates,sf0.54,
possesses exponentially growing solutions then a random in8.15, and 2.73, respectively, and have radial eigenfunctions
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0 20

FIG. 4. Unstable mode growth rates for the complete spectrum

. . FIG. 5. Unstable growth rates for the spectrum of two-shell
of one-shell states. The vertical dashed line corresponds to the . L
_ . . states(The range 1% <20 has been omitted to ease viewing of
B=3 case discussed in the text.

the myriad of curves.

qualitatively similar to that shown in Fig. 3. The other fami- C. Two-shell case

lies thus possess either negative or purely imaginary. e_igen- Repeating the above procedure for the spectrum of two-
values and will not influence the dynamics of the initial she|| states, Fig. 5 shows the corresponding unstable growth
breakup. In decreasing order of instability, the ranking of the.zte curves. Consider first the=6 case indicated by the
growth rates id =3, 2, 4, and 1 and we therefore predict |eft-most dashed line. Maximally unstable is the6 mode
that the initially symmetric shell will evolve into a structure followed in descending order By=5, 7, 3, 4, 8 and 2. The
characteristic of the maximally unstable=3 mode. (As  solid curves at the top of Fig. 6 show the radial perturbation
noted in Ref[11] for thed=2 case, this ordering of modes functions corresponding to the=6 and|=3 modes. Al-
conflicts with the findings of Kolokolov and Sykd¥6] who  thoughl =6 is maximally unstabldg| corresponding to this
predicted that the unstable mode with the largeshdex  mode is concentrated at the outer shell and acts negligibly at
would be maximally unstablg. smaller radii. As the radial perturbation functions fot5

In thed=2 case, angular perturbations were chosen of th@nd | =7 are qualitatively similar, the first mode that acts
form cosfn¢) and an analysis similar to that above yielded asignificantly on the inner shell is the=3 mode. Therefore,
single m value for the maximally unstable growth mode. one expects markedly different patterns to appear as the two
Numerical simulations then showed the outer ring decomshells break symmetry and decompose. _
posing intom angularly equispaced spots. The situation in  T1he dotted curve in Fig. 6 shows the-4 radial pertur-
d=3 is more complicated for two reasons. First, to perhap?at'on function. Althoggh this mode is localized mainly
state the obvious, recognizing a given pattern as a manife@P0Ut the outer shell, it also possesses a small peak at the
tation of a particular spherical harmonic is not a trivial visualNN€r-halo radius. While this perturbation is not maximally
task. Second, and more important, since E&).contains no unstable for lowelB values, above the crossover point indi-
reference to the azimuthal index, a theoretical degeneracy
exists and fout =3 spherical harmonic modes can possibly
be presentY3, Y3, Y3, and Y3. This raises an interesting
guestion, namely, is one mode selected preferentially or does
a linear combination of allowable modes emerge, the mixture
depending on the realization of the noise used to provoke the
system out of its unstable state? We address this issue em-
pirically in Sec. IV with a series of numerical experiments
followed by spectral analysis of the simulation data.

The analysis carried out above pertains only to fhe3
state. Repeating this procedure for all solitary waves in the
range of allowables results in the growth rate curves de-
picted in Fig. 4. Here the key feature is that tke3 mode is
maximally unstable regardless of the choice of the parameter
B. This is in contrast to thd=2 case, where thm=3 and
m=4 curves intersect at an intermedigevalue, the cross-
over point dividing the spectrum of states into two classes FIG. 6. Top: sample radial perturbation eigenfunctions for the
whose long-term evolution displayed either threefold or four-g=6 two-shell case. Bottom: modulus of tife=6 two-shell soli-
fold symmetry. tary wave.




7640 DARRAN E. EDMUNDSON 55

cated by the solid circle in Fig. 5, tHe=4 growth rate ex- by such a choice and so the pole is selected on a case by case
ceeds that of thé=3 mode. In this region, thg(r) are basis to align with an obvious symmetry axis of the broken
gualitatively similar to those of Fig. 6the |=4 shoulder state. Finally, rather than considering the evolution of both
slowly diminishing with increasingd) and soB ..ssshould A and B, note thatC=/AZ+B? is invariant to rotations
divide the spectrum of states into two classes possessing digbout the pole. As the absolute orientation is of little interest,
ferent inner-shell stability properties. However, it is @t consideration of th&€" will suffice.

priori evident that the small=4 shoulder is sufficient to
dominate the sharply peakeld=3 mode having only a
slightly lower growth rate. Thus, for th8=10 case indi-
cated by the right-most vertical dashed line in Fig. 5, the Consider the decomposition of tife=3 one-shell solitary
outer shell shouldstill) display aYg-type instability with ~ wave. As a slight modification to thel(r) profile, a small
the inner shell possibly decaying into a pattern reflecting théandom noise terri is added in order to seed the instability,
Yy family of modes. viz.,

B. One-shell simulations

=0)= + )
IV. NUMERICAL RESULTS E(r,z=0)=U(n1+T(txy)] (12)

To test the predictions of Sec. Ill, one- and two-shell soli-Although the solitary wave is unstable without this modifi-
tary wave profiles were numerically evolved according tocation due simply to the presence of intrinsic numerical
Eqg. (3). In Sec. IVA, the particulars of the numerical tech- noise, in such cases one finds that the evolving solution pos-
niques utilized are described. In Sec. IV B typical one-shellsesses the symmetry of the underlying computational mesh.
simulations are presented and the results interpreted via With the addition of a destabilizing perturbation intended to
spherical harmonic spectral analysis at varying stages of th@imic the fluctuations inherent to a real system, this effect
solitary wave's decay. Section IV C presents an analogougisappears and one is properly left with a symmetry breaking
treatment of the two-shell case. determined by the physics of the problem.

Figure 7 shows volume-rendered imagedEff at six in-
teresting stages of the evolutig@l]. (Note that the crisp
) . - ) i _edges in these images are an artifact of the visualization pro-

While the linear stability analysis was carried out in cess |E| values below this surface level being rendered
spherical polar coordinates, the numerical code used tﬁansparen}. From z=0 to approximatelyz=2.0 (not
evolve solitary waves according to E(B) was that used for - spown the initial state remains relatively stable. However,
previous interaction studi¢®,13,17 where a Cartesian co- py frame (b) the shell has become slightly aspherical and
ordm_ate system was the most natural choice. Solitary WavBegun to clump in two regions. In franfe) this process is
solutions were centered on a £28,x,y) mesh and evolved el developed and the shell has coalesced into a tubelike
forward in z using the beam-propagation meth@®PM)  strycture and single “ball.” In agreement with the localiza-
[18], a split-operator algorithm consisting of alternating tion of the unstable radial perturbation functions, the central
stages of linear and nonlinear evolution. The advantage Gfore remains relatively unaffected by these transverse insta-
this technique is the tremendous speed increase that one figiities. As the ball in the foreground begins to move towards
alizes from solving the linear problem in the Fourier domainthe |ower-front corner of the mesh, the tube structure drifts in
with a highly efficient(and vectorizablefast fourier trans-  he opposite direction slowly expanding in diameter. In
form (FFT) algorithm[19]. The accuracy of the solution was frames(d) and (e), the tube is observed to pinch off at sev-
checked by repeating the simulations with different “time- gra| |ocations forming four separated clumps. Referring to
step” valuesAz. . o _ the power curves of Fig. 2, the left-most clump does not

As mentioned earlier, recognizing the decomposition ofyossess enough energy content to form a fundamental soliton
an initiall_y symmetric_ shell into a pattern reflecting a particu- j e, P< P.,) and therefore disperses into the background.
lar spherical harmonic is an arduous visual task. Therefore, Bemonstrating the attractorlike nature of the fundamental
quantitative spectral analysis | was performed using the state, a one-parameter fit j of their respective radial in-
SPHEREPACKIibrary [20]. This package is able to determine tensity profiles(not shown indicates that the other objects

A. Numerical methods

the harmonic coefficienta" andB" in the expansion have condensed intB, light bullets. In the final image, the
bottom-right light bullet pokes through the back wall as it
|E(f*,0i,¢j)|=2 > [Al'cogme;) transits the periodic boundary implicit to the numerical
T m scheme.

Taking SPHEREPACKs orientational pole to align with the
obvious cylindrical symmetry axis of Fig(@), and with the
north pole deemed to be at the bottom-front of the image to
where; and ¢; define a spherical mesh at the raditisand  facilitate later discussion, Fig. 8 shows thevolution of the
P" is the associated Legendre function that appeared in thepherical harmonic decomposition |&| at the mean radius
definition of the spherical harmonic. As the simulation dataof the shellr* =1.15. The data is restricted k&5, as modes
is defined on a Cartesian grid, interpolation|Bf from the  above this value are found to contain negligible energy con-
regular mesht(x,y) to the locationsi(*,6;,¢;) is required. ~ tent. In addition, due to its large initial value, the dc mode
In addition, one must also choose a pole with respect tJ is omitted from this figure. €3 does, however, decrease
which the 6, are oriented. The harmonic analysis is affectedrapidly in the vicinity ofz=3.0 as the tube and the lower-

—B{"sin(m¢;)1P{"(6)), 13



55 UNSTABLE HIGHER MODES OF A THREE. .. 7641

(b) (c)
l ™ l Q
(d) (e) (M
FIG. 7. Simulation of theB=3 one-shell state reveals instability of the solution to a small amount of random f@ise=0, (b)
z=2.4,(c) z=2.8,(d) z=3.2, (e) z=3.4, and(f) z=4.6.[In frame (a) an octant has been removed in order to visualize the central| core.

forming bullet move away from the analysis rad)us pre-  intervening region. The lack of any field intensity above the
dicted, anl =3 mode dominates the initial evolution, at least tube is a result of th@3 minima nearf= .
up until the formation of the torus structure which is already = Repeating this simulation with different realizations of the
far beyond the linear regime. random noise term, one observes a variety of other patterns

The correspondence between the dominghimode and  characterized by various mixtures 6§ modes. Thus rather
the pattern that emerges out of the originally symmetric shelthan theY3 pure state being intrinsically favored by the sys-
is readily understood by referring to tte)(6) associated tem, the structure of Fig.(@ is likely the result of a bias in
Legendre function, shown in Fig. 9. At angular locationsthe destabilizing noise. Unfortunately, sincesRHEREPACK
whereP) is positive(negative, |E(r=r*)| tends to increase analysis of the noise depends upon the radius at which it is
(decreasgin intensity. Thus, the peak #=0 leads to coa- calculated, correlation with the emergent pattern is difficult.
lescence of the light bullet at the north pole, the maxima neawhile this problem could be avoided by performing simula-
0=0.6m7 results in the formation of the tube structure, andtions on a spherical mesh, where the perturbation can trivi-
the bracketed negative minima causes field depletion in thelly be made radially invariant, instead we choose a different
approach. Namely, we investigate the patterns that emerge
when the perturbation is intentionally biased towards a spe-
cific mode or combination of modes from the maximally
unstable family.

For example, if thésmall destabilizing perturbation con-
sists solely of thé/% mode(having its orienting pole perpen-

FIG. 8. Spherical harmonic spectral analysis of the simulation FIG. 9. Associated Legendre functions used to explain the for-
data of Fig. 7. Dominance of dr=3 mode confirms the predictions mation of one-shell patterns discussed in the tékhe P |" have
of Fig. 4. been vertically scaled to fit on the same viewgraph.



7642 DARRAN E. EDMUNDSON 55

shows a volume rendering of the intermediate pattern that
develops from a destabilizing perturbation in the ratio
(Y3:Y3:Y3:Y3)=(4:3:2:1). Although this pattern is ob-
served in a regime far removed from that where the linear
stability analysis is valid, spectral analysis recovers the
above ratios to within=5%. Further, preservation of the
initial mode mixture is found to be insensitive to both the
magnitude of the perturbation and the purity of the initial
spectrum as qualitatively similar results are obtained when
the perturbation is both decreased in strength and augmented
with random noise.

C. Two-shell simulations

We turn now to the more complicated two-shell case. Fig-
ure 11 shows the result of numerically propagating the
B=6 two-shell state in the presence of a small amount of
random noise. Between=0 andz=1.3 (not shown little
change occurs in the initial solitary wave. By fraiti®, the
outer shell has evolved into a structure where light bullets
are coalescing at the vertices of apparently hexagonal faces.
Note, however, that while the symmetry breaking of the
outer shell is well advanced, the inner shell remains rela-
tively intact. By frame(c), the outer-shell structure has com-
pletely disintegrated resulting in the formation of a multitude

of interactingE, light bullets. At this point the inner shell

FIG. 10. Intermediate structures that emerge when the destab'B :
egins to decompose although the small scale and surround-
lizing perturbation is biased towards specific m@ile(a) Y2 only. 9 P 9

. ) - o~ . ing matter make it difficult to discern the nature of the
L?sAb}I;aér:igﬁ;tl;%&;oﬁocrg?:;]yatlOn of alf5'modes/The inner core emerging pattern. In the remaining frames, the light bullets

move radially outwards towards the mesh boundaries under-
) ) ) going complicated dynamical interactiofifs an interesting
dicular to thet-x plane, the radically different pure-state gasjde, the two overlapping bullets indicated by the arrow in
structure of Fig. 1(8) emerges[Referring toP3 shown in  frames(c)—(f) coalesce, but then periodically emerge with
Fig. 9, this pattern can be understood with an argumengscillatory behavior reminiscent of a one-dimensional soliton
analogous to that above, taking into account the effect of th@reather modg.

cos(2p) azimuthal perturbation functioh Different pure- Consider the pattern formed by the outer shell localized
state patterns can similarly be achieved for the remainingibout r*=2.0. Taking the orientational pole to pierce
Y3 and Y3 modes. In addition, when the initial perturbation through the center of the hexagonal face closest to the reader,
consists of an arbitrary linear combination of modes, thisFig. 12a) shows the resultant spherical harmonic decompo-
samemode mixture is observed in a spectral analysis of thesition of |E(r*)|. In agreement with the linear stability pre-
emergent structure. As an illustrative example, Fig(bl0 dictions, the leading spectral component is a member of the

(b)

(d) (e ®

FIG. 11. Evolution of theB=6 two-shell state with random destabilizing noiga) z=0, (b) z=1.9, (c) z=2.2, (d) z=2.4, (¢
z=2.9, and(f) z=3.3.[In frame(a) an octant has been removed in order to visualize both the central core and the inngr shell.
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FIG. 13. Yg pure state obtained by biasing the destabilizing
perturbation.(Both the inner shell and central core have been re-
moved in this rendering.

the one-halo simulations, pure-state patterns were produced
by applying a small bias towards a particular mode, Fig. 13
showing the cylindrically symmetridg structure obtained

via this technique. Further, evolution of the two-shell solitary
wave was also found to preserve arbitrary mode mixtures
used to destabilize the initial state, these small perturbations
growing exponentially to determine the emergent intermedi-
ate pattern.

Finally, we consider the decay of th8=10 solitary
wave’'s inner shell which, as discussed at the end of
Sec. Il C, may be dominated by &r 4 instability. Propa-
gating this state in the presence of random noise, Fig. 14
shows the resultant harmonic decomposition|Bf at the
inner-shell radiug* =1.1. Whilel=4 modes dominate the
early evolution, beyond=2.5 significant spectral content

FIG. 12. Spherical harmonic spectral analysis of the simulatior£Merges in modes=3 throughl=6. This results in the

data of Fig. 11.(a) Outer shell.(b) Inner shell.(Axis labels for
m+#0 modes have been omitted for clarjty.

formation of a highly irregular intermediate pattefnot
shown) before the system eventually relaxes to a number of
interacting fundamental states.

| =6 family of modes. The reason for the significant spectral

energy observed in tHe=5 family is unclear but, noting that
this mode’s growth rate is only slightly lower than the domi-
nantl =6 mode(see Fig. 3, is likely a result of a bias in the
destabilizing perturbatiof22]. Supporting evidence for this
statement is twofold. First, repeating this simulation with

different realizations of the random noise term, while the

I =6 family is (as expectedalways observed to dominate, a
large =5 contribution does not manifest itself in every
simulation. Second, intentionally destabilizing with equal
amounts ofl =5 andl=6 modes(and taking into account
the differing growth rates this same mode mixture is ob-
served in the emergent pattern.

To quantitatively analyze the® =0.95 inner-shell pattern,
the surrounding matter in Fig. 4@ was removed and an
orientational pole identified. With such a choice, Fig(2

shows the resultant harmonic analysis. In agreement with

theory, the inner shell is dominated by the 3 family of
modes.
Repeating this simulation with different realizations of the

random noise term, a myriad of complicated intermediate

states characterized by various mixtured f6 outer-shell

FIG. 14. Spherical harmonic spectral analysis of #e10 two-

and| =3 inner-shell modes was observed. In addition, as irshell state’s inner halo.
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V. CONCLUSION thed=2 case, rather than a single structure emerging inde-

In this paper, the transverse stability of the higher—bouncger?dent of the reali;ation of the .ra”dO’T‘ destabi!izing pertur-
solitary wave solutions of a 3D nonlinear Sctimger equa- ation, here a myf'ad of comphcated intermediate pat.terns
tion with saturating nonlinearity was examined. A linear sta- V@S observed. _Th|s was attributed to a degeneracy in the
bility analysis of spherical harmonic mod¥g showed these "Umber of maximally unstable modes, ail members of a
higher states to be unstable and yielded predictions for th@iven | family being allowably present. Although a direct
maximally unstable family of modes expected to dominatecOrrelation between the random noise spectrum and the
the decay of each shell. Numerically evolving various one-€mergent mode mixture was not demonstrated, the ability to
and two-shell solitary waves in the presence of random noisBreduce both pure states and arbitrary linear combinations of
intended to mimic the fluctuations inherent with a real sys-modes in the far-from-linear regime by appropriately biasing
tem, these general predictions were confirmed by spectrdhe destabilizing perturbation provides fairly conclusive evi-
analysis of the emergent patterns. However, in contrast witldence that such a connection exists.

[1] E. Infeld and G. RowlandsiNonlinear Waves, Solitons and [14] N. N. Akhmediev, V. I. Korneev, and Yu. V. Kuz'menko,
Chaos (Cambridge University Press, Cambridge, England, Zh. Eksp. Teor. Fiz88, 107 (1985 [Sov. Phys. JET®1, 62

1990. (1985].
[2] A. C. Newell and J. V. Maloney, Nonlinear Optics [15] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
(Addison-Wesley, Redwood City, CA, 1992 W. T. Vetterling, Numerical RecipesCambridge University
[3] V. E. Zakharov and A. B. Shabat, Sov. J. Theor. Phys. JETP _ Press, New York, 1986
34, 62 (1972. [16] A. A. Kolokolov and A. I. Sykov, J. Appl. Tech. Phyd,
[4] J. Z. Wilcox and T. J. Wilcox, Phys. Rev. LetB4, 1160 519 (1979.
(1975 [17] D. E. Edmundson and R. H. Enns, Opt. L8, 1609(1993.
[5]J. H .Marburger and E. Dawes, Phys. Rev. L&1, 556 [18] G. P. Agrawal,Nonlinear Fiber Optics(Academic, San Di-
(1968. ’ ego, 1989,

_ . [19] Despite the intrinsic speed of the BPM, this three-dimensional
(6] gh K. ;aw, LKitg_Jsgg(?i’ga?’sY' Yoshida, and A. Hasegawa, problem still poses a significant computational burden. The
[7]Y y;i.lbe(ret\)/.erge Op,t Lett15 iZSZ(lQQQ simulations were carried out on Fujitsu VPX240/10 and

. VP2600 supercomputers.
[8] N. Akhmediev and J. M. Soto-Crespo, Phys. ReWA1358  |5q] sperepackis available from the software repository Netlib,

(1993. accessible via the World Wide Web atURL: http://
[9] D. E. Edmundson and R. H. Enns, Phys. Rev5A 2491 www.netlib.orgt> .
(1995. [21] Animations of these and other simulations can be obtained at
[10] R. McLeod, K. Wagner, and S. Blair, Phys. Rev52, 3254 <URL: http://iwww.sfu.ca’-renns/lbullets.htm# .
(1995. [22] The other possibility is that the “dirty” spectrum of Fig. (&
[11] J. M. Soto-Crespo, D. R. Heatley, E. M. Wright, and is an artifact of the mesh resolution. Unfortunately, depen-
N. N. Akhmediev, Phys. Rev. A4, 636 (1991). dence on a radix-2 FFT algorithm and the intensive memory
[12] A. A. Kolokolov, J. Appl. Mech. Tech. Phys, 426 (1973. and CPU requirements of simulating on a 2%8@id prevented

[13] D. E. Edmundson and R. H. Enns, Opt. Lét, 586 (1992. us from examining this possibility.



