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Unstable higher modes of a three-dimensional nonlinear Schro¨dinger equation

Darran E. Edmundson
Research Center for Computational Science, Fujitsu Ltd., 1-9-3 Nakase, Mihama-ku, Chiba 261, Japan

~Received 20 January 1997!

Characterized by a central core surrounded by a number of concentric shells, the stability of the higher-
bound solitary wave solutions to a three-dimensional nonlinear Schro¨dinger equation with saturating nonlin-
earity is investigated. A linear stability analysis of spherical harmonic modes reveals these solutions to be
transversely unstable. Further, the complicated intermediate patterns observed in numerical simulations are
shown to result from a degeneracy in the number of maximally unstable modes, the mode mixture depending
on the realization of the destabilizing perturbation.@S1063-651X~97!00106-2#

PACS number~s!: 42.65.Tg, 42.65.Sf
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I. INTRODUCTION

The generalized nonlinear Schro¨dinger ~NLS! equation

i
]E

]z
1
1

2
¹2E1 f ~ uEu2!E50 ~1!

is a d-dimensional amplitude equation that describes
modulations of a slowly varying complex envelopeE in the
presence of weak nonlinearity governed by the funct
f (uEu2). It arises quite naturally in several physical conte
@1#, for example, the evolution of the plane-polarized en
lope of a quasimonochromatic electromagnetic pulse pro
gating through a dielectric having an intensity-dependent
electric constant@2#. In one dimension withf (uEu2)5uEu2,
Eq. ~1!’s most well-known attribute is its integrability an
the analytical existence of soliton solutions@3#. For the same
nonlinearity in d.1 dimensions, while localized solitar
wave solutions exist, they are found to be unstable to sm
perturbations, the pulses either delocalizing or undergo
collapse depending on the initial condition. As noted by W
cox and Wilcox@4#, this is a relatively common occurrenc
‘‘except for the case of one dimension, wave functions o
tained from equations containing low-order nonlinearit
generally suffer from the disease of being unstable . . .
However, in numerous cases it has been found that satura
of the nonlinearity suppresses the instability resulting in
existence of stable~at least to small perturbations! localized
solutions.

As illustrative examples, the stabilizing effect of nonli
ear saturation was invoked by Marburger and Dawes@5# in
the early days of nonlinear optics to explain the formation
small-scale filaments in the cross section of a self-focus
laser beam, by Wilcox and Wilcox@4# and Kawet al. @6#,
who considered a saturating exponential nonlinearity in
class of two- and three-dimensional~3D! wave equations,
and more recently in the study of ‘‘light bullets’’—stable 3
nondispersing nondiffracting optical envelope solito
@7–10#.

In addition to the fundamental Gaussianlike station
states that only asymptotically approach zero, ind.1 there
exist higher-bound solitary waves that are characterized
progressively less localization and, more importantly, an
creasing number of field nodes~zero intercepts ofuEu). Re-
551063-651X/97/55~6!/7636~9!/$10.00
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cently, Soto-Crespoet al. @11# studied the stability of these
higher-bound states in a 2D NLS equation with saturat
nonlinearity. In this case, the fundamental mode is a sin
Gaussian-like peak while the higher modes are comprise
a central spot surrounded by a number of concentric rin
Numerical propagation of these solitary waves revealed th
to be transversely unstable, the rings decomposing int
number of stable filaments that subsequently underw
complicated dynamical interactions. The number of filame
formed by a given ring was found to agree with the pred
tions of both a linear stability analysis and an approxim
analytical treatment.

The aim of this paper is to investigate the analogous c
in three spatial dimensions. Using the terminology of nonl
ear optics, here the fundamental mode is a stable spheric
symmetric ‘‘light bullet’’ while the higher-bound states con
sist of an inner core surrounded by a number of concen
shells. Not surprisingly, these higher modes are also foun
be unstable to propagation, the shells eventually decay
into a number of fundamental light bullets. However, due
both the increased dimensionality and a degeneracy in
number of unstable modes possessing the maximal gro
rate, the nature of this decay is markedly different from t
2D case.

The remainder of the paper is organized as follows.
Sec. II, the model equation is introduced from a nonline
optics perspective and the solitary wave solutions are
scribed. In Sec. III, the linear stability analysis formalism
presented and predictions are made about the expected
namical behavior of shell-state propagation under the g
erning wave equation. In Sec. IV, simulations are shown
the one- and two-shell cases and the results examine
view of the linear stability analysis predictions. Finally, Se
V contains a summary and brief discussion.

II. MODEL EQUATION AND STATIONARY STATES

The physical situation we consider is the propagation o
3D plane-polarized quasimonochromatic electromagn
pulse traveling through a bulk nonlinear glass under
combined effects of dispersion and diffraction. With th
assumption that the pulse envelopef is slowly varying com-
pared to the carrier frequency and that the intens
dependent refractive index has the saturable formn5
7636 © 1997 The American Physical Society
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55 7637UNSTABLE HIGHER MODES OF A THREE- . . .
n01n2ufu2/(11a8ufu2), wherea8 is an inverse measure o
the saturation intensity, the complex envelope evolves
cording to@7#

2ikS ]

]z8
1
1

vg

]

]t8Df1
]2f

]x82
1

]2f

]y82
1kD

]2f

]t82

1
2k2n2
n0

ufu2

~11a8ufu2!
f50. ~2!

Here, z8 is the pulse propagation direction,x8 and y8 the
transverse spatial dimensions,t8 the time,k the wave vector
of the underlying carrier wave,vg the group velocity, and
D ~assumed positive! the group velocity dispersion. Makin
use of the scalings t5(t82z8/vg)(k/D)

1/2, (x,y,z)
5k(x8,y8,z8), E5(n2 /n0)

1/2f, anda5(n2 /n0)a8, we ob-
tain the following~311!-dimensional nonlinear Schro¨dinger
equation:

i
]E

]z
1
1

2
¹2E1

uEu2

11auEu2
E50, ~3!

where¹2[]2/]t21]2/]x21]2/]y2. Note the existence o
only one free parameter implying that, even restricting o
selves to the current physical context, the results that fol
are applicable to a wide range of material and pulse par
eters.

Spherically symmetric solitary wave solutions~spheroidal
in laboratory units! are found by inserting the assumed for

E~r5At21x21y2,z!5exp~ ibz!U~r ! ~4!

into Eq. ~3! yielding an ordinary nonlinear differential equa
tion for the radial profile, viz.,

d2U

dr2
1
2

r

dU

dr
12UF U2

11aU2 2bG50. ~5!

Assuming thatU has its maximal value atr50, and impos-
ing the boundary conditionsdU/dr, d2U/dr2→0 asr→`,
Eq. ~5! constitutes a two-point boundary value problem
the real profileU. Lacking an analytical solution, these radi
profiles must be obtained numerically, one empirically fin
ing a single monotonically decreasing Gaussian-like pro
and a number of higher modes characterized by an increa
number ofU50 crossings of the field. The members of
given b family are enumeratedUn where the subscriptn
denotes the number of zero crossings.

As an example, setting the saturation parametera50.05
~which it will remain for the remainder of this paper!, Fig. 1
shows the lowest three modes from theb53 family of so-
lutions. Profiles at otherb values are qualitatively similar
this parameter’s effect being to gradually modify both t
field’s peak height and the locations and depths of the
trema. As the simulation results presented later depict
evolution of the modulus of the complex fieldE, the figure
inset similarly showsuE1u5uU1u revealing a central core sur
rounded by a single shell.

As intimated in the Introduction, the simple existence
solitary wave solutions does not imply their stability wh
evolved under the governing wave equation. Some ins
into stability can be obtained as follows. For a given profi
c-

-
w
-

r

-
e
ing

x-
e

f

ht

Un(r ;b), the integrated intensity~power! of thenth mode as
a function of the~shape-changing! parameterb is given by

Pn~b!5E
0

`

Un~r ;b!2r 2dr. ~6!

Figure 2 shows the power curves for the lowest three mo
where the filled circles indicate the powers of the three
lutions depicted in Fig. 1. The generalU shape of these
curves is characteristic off (uEu2) models displaying satu
rable behavior. Further, the minima of theP0 curve~denoted
Pmin! is found to delimit two regions of differing stability
Solitary waves on the negative slope branch are numeric
found to be unstable@10#. Conversely, positive slope solitar
waves are theoretically predicted to be stable@12# and this is
borne out by numerical simulations@10,13#. In addition to
their intrinsic stability, these solutions have been shown
act as attractor states to initial profiles quite different fro

FIG. 1. The lowest three modes from theb53 family of soli-
tary wave solutions. Inset: modulus of theU1 solution reveals a
central core surrounded by a single shell.

FIG. 2. Integrated intensity~power! vs the shape-changing pa
rameterb for the lowest three bound modes. Circles correspond
the profiles shown in the preceding figure. Solitary waves to
right of Pmin are known to be stable.
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7638 55DARRAN E. EDMUNDSON
the true solitary wave profile, e.g., Akhmediev and So
Crespo have demonstrated the decay of a cylindrical b
subject to a temporal modulation into a train of fundamen
states@8#.

One might initially suspect that the higher modes a
obey the above stability criterion and that stable shell sta
are viable for a range of positive-slopeb values. However,
this test does not preclude the existence of a transvers
stability, a situation which was observed in Ref.@11# in a 2D
version of Eq.~3! and which we similarly investigate fo
d53.

III. LINEAR STABILITY ANALYSIS

In this section a linear stability analysis is performed
the 3D shell states. Section III A discusses the method u
to determine the growth rates and functional forms of
unstable perturbation eigenmodes. The subsequent sec
present linear stability analysis results for the one- and t
shell cases, respectively.

A. Formalism

To analyze the stability of the shell states, we follo
Soto-Crespoet al. @11# and, considering the Laplacian o
Eq. ~3! in spherical polar coordinates, choose an appropr
separable perturbation to thenth mode stationary solution
En , namely,

E~r ,u,f,z!5En~r ,z!1mg~r ,z!Yl
m~u,f!. ~7!

Here,m is a small expansion parameter and, noting that
angular perturbation function must be real to obtain the
earized equation that follows, the spherical harmonic fu
tion is defined asYl

m(u,f)5Pl
m(u)cos(mf), with Pl

m the
associated Legendre function.

To first order inm, substitution of Eq.~7! into Eq. ~3!
yields the following~linear! partial differential equation for
the radial evolution of a given perturbation

i
]g

]z
1

1

2r 2
]

]r S r 2 ]g

]r D2
l ~ l11!

2r 2
g

1
2uEnu2g1auEnu4g1En

2g*

~11auEnu2!2
50. ~8!

While the u dependence is implicit via the spherical ha
monic mode indexl , due to rotational invariance of the La
placian no reference to the azimuthal indexm occurs in
Eq. ~8!. The ramifications of this point will become clear
Sec. III B.

Exponentially growing solutions of the form

g~r ,z!5g~r !exp~dz! ~9!

are sought with substitution of Eq.~9! into Eq. ~8! consti-
tuting an eigenvalue problem for the growth constantd and
radial perturbation eigenfunctiong(r ). Rather than solve this
problem directly, the following technique due to Akhmedi
et al. @14# was used to extract both the perturbation eig
functions and their respective growth rates. If the syst
possesses exponentially growing solutions then a random
-
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tial profile evolved numerically according to Eq.~8! should
eventually be dominated by the mode with the largest gro
rate. Once this mode emerges, the growth constant ca
extracted via the prescription

d l5
1

Dz
@ lnug~r ,z1Dz!u2 lnug~r ,z!u# ~10!

and the calculation terminated whend l converges both inz
and as calculated at several locations across the pulse.
latter stopping criterion ensures thatg(r ) is growing in a
spatially invariant way and is an accurate representation
the true radial perturbation eigenfunction.

B. One-shell case

As a concrete example, consider the stability of t
b53 one-shell state depicted in Fig. 1 to a spherical h
monic perturbation with indexl53. Starting with a small
random initial condition forg(r ,0), Eq. ~8! was evolved us-
ing a ~unconditionally stable! Crank-Nicholson algorithm
@15#. As shown in the inset of Fig. 3, an exponentially grow
ing radial profile forugu emerges. The vertical scale is omi
ted as the absolute height of the pulse is not importa
Rather, the salient feature is that byz53 all points across the
pulse are found to be growing at the same exponential
d353.75. At this point the calculation was terminated yiel
ing the ~normalized! ug(r )u profile shown to the left of the
inset figure. For comparison, below we plot theb53 one-
shell radial profile revealing thatugu is peaked about the
mean radius of the shell and acts negligibly in the vicinity
the origin. Such localization implies that this perturbati
will affect only the shell leaving the central core relative
untouched.

In order to discover the maximally unstable mode, t
above analysis was repeated for otherl values, one finding
that aside from the unstable mode discussed above, only
l51, 2, and 4 do exponentially growing profiles emerg
These unstable modes possess growth rates ofd l50.54,
3.15, and 2.73, respectively, and have radial eigenfuncti

FIG. 3. Top: dominant unstablel53 radial perturbation eigen
mode emerging from a small random initial condition. Bottom
modulus of theb53 one-shell solitary wave.
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55 7639UNSTABLE HIGHER MODES OF A THREE- . . .
qualitatively similar to that shown in Fig. 3. The other fam
lies thus possess either negative or purely imaginary eig
values and will not influence the dynamics of the init
breakup. In decreasing order of instability, the ranking of
growth rates isl53, 2, 4, and 1 and we therefore predi
that the initially symmetric shell will evolve into a structur
characteristic of the maximally unstablel53 mode. ~As
noted in Ref.@11# for thed52 case, this ordering of mode
conflicts with the findings of Kolokolov and Sykov@16# who
predicted that the unstable mode with the largestl index
would be maximally unstable.!

In thed52 case, angular perturbations were chosen of
form cos(mf) and an analysis similar to that above yielded
single m value for the maximally unstable growth mod
Numerical simulations then showed the outer ring deco
posing intom angularly equispaced spots. The situation
d53 is more complicated for two reasons. First, to perh
state the obvious, recognizing a given pattern as a man
tation of a particular spherical harmonic is not a trivial visu
task. Second, and more important, since Eq.~8! contains no
reference to the azimuthal indexm, a theoretical degenerac
exists and fourl53 spherical harmonic modes can possib
be present:Y3

0, Y3
1, Y3

2, andY3
3. This raises an interestin

question, namely, is one mode selected preferentially or d
a linear combination of allowable modes emerge, the mixt
depending on the realization of the noise used to provoke
system out of its unstable state? We address this issue
pirically in Sec. IV with a series of numerical experimen
followed by spectral analysis of the simulation data.

The analysis carried out above pertains only to theb53
state. Repeating this procedure for all solitary waves in
range of allowableb results in the growth rate curves d
picted in Fig. 4. Here the key feature is that thel53 mode is
maximally unstable regardless of the choice of the param
b. This is in contrast to thed52 case, where them53 and
m54 curves intersect at an intermediateb value, the cross-
over point dividing the spectrum of states into two clas
whose long-term evolution displayed either threefold or fo
fold symmetry.

FIG. 4. Unstable mode growth rates for the complete spect
of one-shell states. The vertical dashed line corresponds to
b53 case discussed in the text.
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C. Two-shell case

Repeating the above procedure for the spectrum of t
shell states, Fig. 5 shows the corresponding unstable gro
rate curves. Consider first theb56 case indicated by the
left-most dashed line. Maximally unstable is thel56 mode
followed in descending order byl55, 7, 3, 4, 8 and 2. The
solid curves at the top of Fig. 6 show the radial perturbat
functions corresponding to thel56 and l53 modes. Al-
thoughl56 is maximally unstable,ugu corresponding to this
mode is concentrated at the outer shell and acts negligib
smaller radii. As the radial perturbation functions forl55
and l57 are qualitatively similar, the first mode that ac
significantly on the inner shell is thel53 mode. Therefore,
one expects markedly different patterns to appear as the
shells break symmetry and decompose.

The dotted curve in Fig. 6 shows thel54 radial pertur-
bation function. Although this mode is localized main
about the outer shell, it also possesses a small peak a
inner-halo radius. While this perturbation is not maxima
unstable for lowerb values, above the crossover point ind

m
he

FIG. 5. Unstable growth rates for the spectrum of two-sh
states.~The range 12,b,20 has been omitted to ease viewing
the myriad of curves.!

FIG. 6. Top: sample radial perturbation eigenfunctions for
b56 two-shell case. Bottom: modulus of theb56 two-shell soli-
tary wave.
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7640 55DARRAN E. EDMUNDSON
cated by the solid circle in Fig. 5, thel54 growth rate ex-
ceeds that of thel53 mode. In this region, theg(r ) are
qualitatively similar to those of Fig. 6~the l54 shoulder
slowly diminishing with increasingb) and sob crossshould
divide the spectrum of states into two classes possessing
ferent inner-shell stability properties. However, it is nota
priori evident that the smalll54 shoulder is sufficient to
dominate the sharply peakedl53 mode having only a
slightly lower growth rate. Thus, for theb510 case indi-
cated by the right-most vertical dashed line in Fig. 5,
outer shell should~still! display aY6

m-type instability with
the inner shell possibly decaying into a pattern reflecting
Y4
m family of modes.

IV. NUMERICAL RESULTS

To test the predictions of Sec. III, one- and two-shell so
tary wave profiles were numerically evolved according
Eq. ~3!. In Sec. IVA, the particulars of the numerical tec
niques utilized are described. In Sec. IVB typical one-sh
simulations are presented and the results interpreted v
spherical harmonic spectral analysis at varying stages of
solitary wave’s decay. Section IV C presents an analog
treatment of the two-shell case.

A. Numerical methods

While the linear stability analysis was carried out
spherical polar coordinates, the numerical code used
evolve solitary waves according to Eq.~3! was that used for
previous interaction studies@9,13,17# where a Cartesian co
ordinate system was the most natural choice. Solitary w
solutions were centered on a 1283 (t,x,y) mesh and evolved
forward in z using the beam-propagation method~BPM!
@18#, a split-operator algorithm consisting of alternatin
stages of linear and nonlinear evolution. The advantage
this technique is the tremendous speed increase that on
alizes from solving the linear problem in the Fourier doma
with a highly efficient~and vectorizable! fast fourier trans-
form ~FFT! algorithm@19#. The accuracy of the solution wa
checked by repeating the simulations with different ‘‘tim
step’’ valuesDz.

As mentioned earlier, recognizing the decomposition
an initially symmetric shell into a pattern reflecting a partic
lar spherical harmonic is an arduous visual task. Therefor
quantitative spectral analysis ofuEu was performed using the
SPHEREPACKlibrary @20#. This package is able to determin
the harmonic coefficientsAl

m andBl
m in the expansion

uE~r * ,u i ,f j !u5(
l

(
m

@Al
mcos~mf j !

2Bl
msin~mf j !#Pl

m~u i !, ~11!

whereu i andf j define a spherical mesh at the radiusr * and
Pl
m is the associated Legendre function that appeared in

definition of the spherical harmonic. As the simulation da
is defined on a Cartesian grid, interpolation ofuEu from the
regular mesh (t,x,y) to the locations (r * ,u i ,f j ) is required.
In addition, one must also choose a pole with respec
which theu i are oriented. The harmonic analysis is affect
if-
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by such a choice and so the pole is selected on a case by
basis to align with an obvious symmetry axis of the brok
state. Finally, rather than considering the evolution of b
A and B, note thatC[AA21B2 is invariant to rotations
about the pole. As the absolute orientation is of little intere
consideration of theCl

m will suffice.

B. One-shell simulations

Consider the decomposition of theb53 one-shell solitary
wave. As a slight modification to theU(r ) profile, a small
random noise termG is added in order to seed the instabilit
viz.,

E~r ,z50!5U~r !@11G~ t,x,y!#. ~12!

Although the solitary wave is unstable without this modi
cation due simply to the presence of intrinsic numeri
noise, in such cases one finds that the evolving solution p
sesses the symmetry of the underlying computational m
With the addition of a destabilizing perturbation intended
mimic the fluctuations inherent to a real system, this eff
disappears and one is properly left with a symmetry break
determined by the physics of the problem.

Figure 7 shows volume-rendered images ofuEu at six in-
teresting stages of the evolution@21#. ~Note that the crisp
edges in these images are an artifact of the visualization
cess, uEu values below this surface level being render
transparent.! From z50 to approximately z52.0 ~not
shown! the initial state remains relatively stable. Howeve
by frame ~b! the shell has become slightly aspherical a
begun to clump in two regions. In frame~c! this process is
well developed and the shell has coalesced into a tube
structure and single ‘‘ball.’’ In agreement with the localiz
tion of the unstable radial perturbation functions, the cen
core remains relatively unaffected by these transverse in
bilities. As the ball in the foreground begins to move towar
the lower-front corner of the mesh, the tube structure drifts
the opposite direction slowly expanding in diameter.
frames~d! and ~e!, the tube is observed to pinch off at se
eral locations forming four separated clumps. Referring
the power curves of Fig. 2, the left-most clump does n
possess enough energy content to form a fundamental so
~i.e., P,Pmin! and therefore disperses into the backgrou
Demonstrating the attractorlike nature of the fundamen
state, a one-parameter fit inb of their respective radial in-
tensity profiles~not shown! indicates that the other object
have condensed intoE0 light bullets. In the final image, the
bottom-right light bullet pokes through the back wall as
transits the periodic boundary implicit to the numeric
scheme.

TakingSPHEREPACK’s orientational pole to align with the
obvious cylindrical symmetry axis of Fig. 7~c!, and with the
north pole deemed to be at the bottom-front of the image
facilitate later discussion, Fig. 8 shows thez evolution of the
spherical harmonic decomposition ofuEu at the mean radius
of the shellr *51.15. The data is restricted tol<5, as modes
above this value are found to contain negligible energy c
tent. In addition, due to its large initial value, the dc mo
Y0
0 is omitted from this figure. (C0

0 does, however, decreas
rapidly in the vicinity of z53.0 as the tube and the lowe
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FIG. 7. Simulation of theb53 one-shell state reveals instability of the solution to a small amount of random noise.~a! z50, ~b!
z52.4, ~c! z52.8, ~d! z53.2, ~e! z53.4, and~f! z54.6. @In frame ~a! an octant has been removed in order to visualize the central co#
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forming bullet move away from the analysis radius.! As pre-
dicted, anl53 mode dominates the initial evolution, at lea
up until the formation of the torus structure which is alrea
far beyond the linear regime.

The correspondence between the dominantY3
0 mode and

the pattern that emerges out of the originally symmetric s
is readily understood by referring to theP3

0(u) associated
Legendre function, shown in Fig. 9. At angular locatio
whereP3

0 is positive~negative!, uE(r.r * )u tends to increase
~decrease! in intensity. Thus, the peak atu50 leads to coa-
lescence of the light bullet at the north pole, the maxima n
u50.6p results in the formation of the tube structure, a
the bracketed negative minima causes field depletion in

FIG. 8. Spherical harmonic spectral analysis of the simulat
data of Fig. 7. Dominance of anl53 mode confirms the prediction
of Fig. 4.
t

ll

ar

e

intervening region. The lack of any field intensity above t
tube is a result of theP3

0 minima nearu5p.
Repeating this simulation with different realizations of t

random noise term, one observes a variety of other patt
characterized by various mixtures ofY3

m modes. Thus rathe
than theY3

0 pure state being intrinsically favored by the sy
tem, the structure of Fig. 7~c! is likely the result of a bias in
the destabilizing noise. Unfortunately, since aSPHEREPACK
analysis of the noise depends upon the radius at which
calculated, correlation with the emergent pattern is difficu
While this problem could be avoided by performing simu
tions on a spherical mesh, where the perturbation can tr
ally be made radially invariant, instead we choose a differ
approach. Namely, we investigate the patterns that em
when the perturbation is intentionally biased towards a s
cific mode or combination of modes from the maxima
unstable family.

For example, if the~small! destabilizing perturbation con
sists solely of theY3

2 mode~having its orienting pole perpen

n FIG. 9. Associated Legendre functions used to explain the
mation of one-shell patterns discussed in the text.~The P l

m have
been vertically scaled to fit on the same viewgraph.!
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7642 55DARRAN E. EDMUNDSON
dicular to thet-x plane!, the radically different pure-stat
structure of Fig. 10~a! emerges.@Referring toP3

2 shown in
Fig. 9, this pattern can be understood with an argum
analogous to that above, taking into account the effect of
cos(2f) azimuthal perturbation function.# Different pure-
state patterns can similarly be achieved for the remain
Y3
1 andY3

2 modes. In addition, when the initial perturbatio
consists of an arbitrary linear combination of modes, t
samemode mixture is observed in a spectral analysis of
emergent structure. As an illustrative example, Fig. 10~b!

FIG. 10. Intermediate structures that emerge when the des
lizing perturbation is biased towards specific mode~s!. ~a! Y3

2 only.
~b! A particular linear combination of allY3

mmodes.~The inner core
has been removed for clarity.!
nt
e

g

s
e

shows a volume rendering of the intermediate pattern
develops from a destabilizing perturbation in the ra
(Y3

0 :Y3
1 :Y3

2 :Y3
3)5(4:3:2:1). Although this pattern is ob-

served in a regime far removed from that where the lin
stability analysis is valid, spectral analysis recovers
above ratios to within65%. Further, preservation of th
initial mode mixture is found to be insensitive to both th
magnitude of the perturbation and the purity of the init
spectrum as qualitatively similar results are obtained wh
the perturbation is both decreased in strength and augme
with random noise.

C. Two-shell simulations

We turn now to the more complicated two-shell case. F
ure 11 shows the result of numerically propagating
b56 two-shell state in the presence of a small amount
random noise. Betweenz50 andz51.3 ~not shown! little
change occurs in the initial solitary wave. By frame~b!, the
outer shell has evolved into a structure where light bull
are coalescing at the vertices of apparently hexagonal fa
Note, however, that while the symmetry breaking of t
outer shell is well advanced, the inner shell remains re
tively intact. By frame~c!, the outer-shell structure has com
pletely disintegrated resulting in the formation of a multitu
of interactingE0 light bullets. At this point the inner shel
begins to decompose although the small scale and surro
ing matter make it difficult to discern the nature of th
emerging pattern. In the remaining frames, the light bull
move radially outwards towards the mesh boundaries un
going complicated dynamical interactions.@As an interesting
aside, the two overlapping bullets indicated by the arrow
frames~c!–~f! coalesce, but then periodically emerge wi
oscillatory behavior reminiscent of a one-dimensional soli
breather mode.#

Consider the pattern formed by the outer shell localiz
about r *52.0. Taking the orientational pole to pierc
through the center of the hexagonal face closest to the rea
Fig. 12~a! shows the resultant spherical harmonic decom
sition of uE(r * )u. In agreement with the linear stability pre
dictions, the leading spectral component is a member of

bi-
FIG. 11. Evolution of theb56 two-shell state with random destabilizing noise.~a! z50, ~b! z51.9, ~c! z52.2, ~d! z52.4, ~e!
z52.9, and~f! z53.3. @In frame ~a! an octant has been removed in order to visualize both the central core and the inner shell.#
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55 7643UNSTABLE HIGHER MODES OF A THREE- . . .
l56 family of modes. The reason for the significant spec
energy observed in thel55 family is unclear but, noting tha
this mode’s growth rate is only slightly lower than the dom
nantl56 mode~see Fig. 5!, is likely a result of a bias in the
destabilizing perturbation@22#. Supporting evidence for this
statement is twofold. First, repeating this simulation w
different realizations of the random noise term, while t
l56 family is ~as expected! always observed to dominate,
large l55 contribution does not manifest itself in eve
simulation. Second, intentionally destabilizing with equ
amounts ofl55 and l56 modes~and taking into accoun
the differing growth rates!, this same mode mixture is ob
served in the emergent pattern.

To quantitatively analyze ther *50.95 inner-shell pattern
the surrounding matter in Fig. 11~c! was removed and an
orientational pole identified. With such a choice, Fig. 12~b!
shows the resultant harmonic analysis. In agreement w
theory, the inner shell is dominated by thel53 family of
modes.

Repeating this simulation with different realizations of t
random noise term, a myriad of complicated intermedi
states characterized by various mixtures ofl56 outer-shell
and l53 inner-shell modes was observed. In addition, as

FIG. 12. Spherical harmonic spectral analysis of the simula
data of Fig. 11.~a! Outer shell.~b! Inner shell.~Axis labels for
mÞ0 modes have been omitted for clarity.!
l

l

th

e

n

the one-halo simulations, pure-state patterns were produ
by applying a small bias towards a particular mode, Fig.
showing the cylindrically symmetricY6

0 structure obtained
via this technique. Further, evolution of the two-shell solita
wave was also found to preserve arbitrary mode mixtu
used to destabilize the initial state, these small perturbat
growing exponentially to determine the emergent interme
ate pattern.

Finally, we consider the decay of theb510 solitary
wave’s inner shell which, as discussed at the end
Sec. III C, may be dominated by anl54 instability. Propa-
gating this state in the presence of random noise, Fig.
shows the resultant harmonic decomposition ofuEu at the
inner-shell radiusr *51.1. While l54 modes dominate the
early evolution, beyondz52.5 significant spectral conten
emerges in modesl53 through l56. This results in the
formation of a highly irregular intermediate pattern~not
shown! before the system eventually relaxes to a numbe
interacting fundamental states.

n

FIG. 13. Y6
0 pure state obtained by biasing the destabilizi

perturbation.~Both the inner shell and central core have been
moved in this rendering.!

FIG. 14. Spherical harmonic spectral analysis of theb510 two-
shell state’s inner halo.
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7644 55DARRAN E. EDMUNDSON
V. CONCLUSION

In this paper, the transverse stability of the higher-bou
solitary wave solutions of a 3D nonlinear Schro¨dinger equa-
tion with saturating nonlinearity was examined. A linear s
bility analysis of spherical harmonic modesYl

m showed these
higher states to be unstable and yielded predictions for
maximally unstable family of modes expected to domin
the decay of each shell. Numerically evolving various on
and two-shell solitary waves in the presence of random n
intended to mimic the fluctuations inherent with a real s
tem, these general predictions were confirmed by spec
analysis of the emergent patterns. However, in contrast w
d
d

T

a,

d

d

-

e
e
-
e
-
al
th

the d52 case, rather than a single structure emerging in
pendent of the realization of the random destabilizing per
bation, here a myriad of complicated intermediate patte
was observed. This was attributed to a degeneracy in
number of maximally unstable modes, allm members of a
given l family being allowably present. Although a direc
correlation between the random noise spectrum and
emergent mode mixture was not demonstrated, the abilit
produce both pure states and arbitrary linear combination
modes in the far-from-linear regime by appropriately bias
the destabilizing perturbation provides fairly conclusive e
dence that such a connection exists.
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